Affiliation:
1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China.
2. Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China.
Abstract
Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology. There are 3 tough and contradictory issues that need to be addressed simultaneously, namely, the actuation pressure of the piezoelectric printhead, satellite droplets, and the air resistance, which seems almost impossible to achieve with classical methods. Herein, a novel solution is introduced. By modulating the positive crosstalk effect inside and outside the printhead, self-tuning can be achieved, including self-reinforcing of the actuation pressure, self-restraining of satellite droplets, and self-weakening of the air resistance, thereby greatly improving droplet velocity. Based on these mechanisms, waveform design methods for different inks and printheads are investigated. The results demonstrate that monodisperse droplet jetting with a maximum velocity of 27.53 m/s can be achieved, reaching 3 to 5 times that of the classical method (5 to 8 m/s). Correspondingly, the printing speed and distance can be simultaneously increased by almost 10 times, demonstrating an ability of direct printing on irregular surface. Meanwhile, the compatibility of ink materials is expanded, as the Ohnesorge number and the viscosity of printable inks for the printhead used are increased from 0.36–0.72 to 0.03–1.18 and from 10–12 cp to 1–40.3 cp, respectively, even breaking the traditional limitations of the piezoelectric printing technology (Ohnesorge number of 0.1 to 1; viscosity of 1 to 25 cp). All the above provide a new perspective for improving droplet velocity and may even offer a game-changing choice for expanding the boundaries of the piezoelectric drop-on-demand inkjet printing technology.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献