Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis

Author:

Ji Xinmiao1,Tian Xiaofei2,Feng Shuang1,Zhang Lei1,Wang Junjun1,Guo Ruowen13,Zhu Yiming13,Yu Xin13,Zhang Yongsen1,Du Haifeng1,Zablotskii Vitalii4,Zhang Xin1235

Affiliation:

1. High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui 230031, P.R China.

2. Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.

3. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230031, P.R China.

4. Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.

5. International Magnetobiology Frontier Research Center, Science Island, Hefei 230031, P.R. China.

Abstract

F-actin (filamentous actin) has been shown to be sensitive to mechanical stimuli and play critical roles in cell attachment, migration, and cancer metastasis, but there are very limited ways to perturb F-actin dynamics with low cell toxicity. Magnetic field is a noninvasive and reversible physical tool that can easily penetrate cells and human bodies. Here, we show that 0.1/0.4-T 4.2-Hz moderate-intensity low-frequency rotating magnetic field-induced electric field could directly decrease F-actin formation in vitro and in vivo, which results in decreased breast cancer cell migration, invasion, and attachment. Moreover, low-frequency rotating magnetic fields generated significantly different effects on F-actin in breast cancer vs. noncancerous cells, including F-actin number and their recovery after magnetic field retrieval. Using an intermittent treatment modality, low-frequency rotating magnetic fields could significantly reduce mouse breast cancer metastasis, prolong mouse survival by 31.5 to 46.0% ( P < 0.0001), and improve their overall physical condition. Therefore, our work demonstrates that low-frequency rotating magnetic fields not only can be used as a research tool to perturb F-actin but also can inhibit breast cancer metastasis through F-actin modulation while having minimum effects on normal cells, which reveals their potential to be developed as temporal-controlled, noninvasive, and high-penetration physical treatments for metastatic cancer.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3