Light-Programmed Bistate Colloidal Actuation Based on Photothermal Active Plasmonic Substrate

Author:

Deng Fangfang1,Chen Juntao2,Xiang Junxiang2,Li Yong1,Qiao Yan3,Liu Ze2,Ding Tao1

Affiliation:

1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

2. Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.

3. Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Abstract

Active particles have been regarded as the key models to mimic and understand the complex systems of nature. Although chemical and field-powered active particles have received wide attentions, light-programmed actuation with long-range interaction and high throughput remains elusive. Here, we utilize photothermal active plasmonic substrate made of porous anodic aluminum oxide filled with Au nanoparticles and poly( N -isopropylacrylamide) (PNIPAM) to optically oscillate silica beads with robust reversibility. The thermal gradient generated by the laser beam incurs the phase change of PNIPAM, producing gradient of surface forces and large volume changes within the complex system. The dynamic evolution of phase change and water diffusion in PNIPAM films result in bistate locomotion of silica beads, which can be programmed by modulating the laser beam. This light-programmed bistate colloidal actuation provides promising opportunity to control and mimic the natural complex systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3