Multieffect Coupled Nanogenerators

Author:

Ji Yun12,Liu Yuan13,Yang Ya123ORCID

Affiliation:

1. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China

2. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3. Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

Abstract

With the advent of diverse electronics, the available energy may be light, thermal, and mechanical energies. Multieffect coupled nanogenerators (NGs) exhibit strong ability to harvest ambient energy by integrating various effects comprising piezoelectricity, pyroelectricity, thermoelectricity, optoelectricity, and triboelectricity into a standalone device. Interaction of multitype effects can promote energy harvesting and conversion by modulating charge carriers’ behaviour. Multieffect coupled NGs stand for a vital group of energy harvesters, supporting the advances of an electronic device and promoting the resolution of energy crisis. The matchless versatility and high reliability of multieffect coupled NGs make them main candidates for integration in complicated arrays of the electronic device. Multieffect coupled NGs can also be employed as a variety of self-powered sensors due to their rapid response, high accuracy, and high responsivity. This article reviews the latest achievements of multieffect coupled NGs. Fundamentals mainly including basic theory and materials of interest are covered. Advanced device design and output characteristics are introduced. Potential applications are described, and future development is discussed.

Funder

Qingdao National Laboratory for Marine Science and Technology

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3