Spatiotemporal Mapping of Surface Water Using Landsat Images and Spectral Mixture Analysis on Google Earth Engine

Author:

Cai Yaotong1,Shi Qian1,Liu Xiaoping1

Affiliation:

1. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275,Guangdong Province, China.

Abstract

Ensuring water resource security and enhancing resilience to extreme hydrological events demand a comprehensive understanding of water dynamics across various scales. However, monitoring water bodies with highly seasonal hydrological variability, particularly using medium-resolution satellite imagery such as Landsat 4-9, presents substantial challenges. This study introduces the Normalized Difference Water Fraction Index (NDWFI) based on spectral mixture analysis (SMA) to improve the detection of subtle and dynamically changing water bodies. First, the effectiveness of NDWFI is rigorously assessed across four challenging sites. The findings reveal that NDWFI achieves an average overall accuracy (OA) of 98.2% in water extraction across a range of water-covered scenarios, surpassing conventional water indices. Subsequently, using approximately 11,000 Landsat satellite images and NDWFI within the Google Earth Engine (GEE) platform, this study generates a high-resolution surface water (SW) map for Jiangsu Province, China, exhibiting an impressive OA of 95.91% ± 0.23%. We also investigate the stability of the NDWFI threshold for water extraction and its superior performance in comparison to existing thematic water maps. This research offers a promising avenue to address crucial challenges in remote sensing hydrology monitoring, contributing to the enhancement of water security and the strengthening of resilience against hydrological extremes.

Funder

National Science Fund for Distinguished Young Scholars

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3