Fast and Accurate Simulation of Canopy Reflectance under Wavelength-Dependent Optical Properties Using a Semi-Empirical 3D Radiative Transfer Model

Author:

Qi Jianbo1,Jiang Jingyi23,Zhou Kun4,Xie Donghui4,Huang Huaguo1

Affiliation:

1. State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China.

2. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.

3. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.

4. The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.

Abstract

Generating canopy-reflectance datasets using radiative transfer models under various leaf and soil optical property combinations is important for remote sensing retrieval of vegetation parameters. One-dimensional radiative transfer models have been frequently used. However, three-dimensional (3D) models usually require detailed 3D information that is difficult to obtain and long model execution time, limiting their use in remote sensing applications. This study aims to address these limitations for practical use of 3D models, proposing a semi-empirical speed-up method for canopy-reflectance simulation based on a LargE-Scale remote sensing data and image Simulation model (LESS), called Semi-LESS. The speed-up method is coupled with 3D LESS to describe the dependency of canopy reflectance on the wavelength, leaf, soil, and branch optical properties for a scene with fixed 3D structures and observation/illumination configurations, allowing fast generating accurate reflectance images under various wavelength-dependent optical parameters. The precomputed dataset stores simulated multispectral coefficient images under few predefined soil, branch, and leaf optical properties for each RAdiation transfer Model Intercomparison-V scene, which can then be used alone to compute reflectance images on the fly without the participation of LESS. Semi-LESS has been validated with full 3D radiative-transfer-simulated images, showing very high accuracy (root mean square error < 0.0003). The generation of images using Semi-LESS is much more efficient than full LESS simulations with an acceleration of more than 320 times. This study is a step further to promote 3D radiative transfer models in practical remote sensing applications such as vegetation parameter inversions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3