Automated Mapping of Global 30-m Tidal Flats Using Time-Series Landsat Imagery: Algorithm and Products

Author:

Zhang Xiao12,Liu Liangyun123ORCID,Wang Jinqing123,Zhao Tingting14,Liu Wendi123,Chen Xidong5

Affiliation:

1. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China.

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

4. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China.

5. North China University of Water Resources and Electric Power, Zhengzhou 450046, China.

Abstract

Tidal flats are an important part of coastal ecosystems and play an important role in shoreline protection and biodiversity maintenance. Although many efforts have been made in tidal flat mapping, an accurate global tidal flat product covering all coasts globally is still lacking and urgently needed. In this study, a novel method is proposed for the automated mapping of global tidal flats at 30 m (GTF30) in 2020 based on the Google Earth Engine, which is also the first global tidal flat dataset covering the high latitudes (>60°N). Specifically, we first propose a new spectral index named the LTideI index through a sensitivity analysis, which is robust and can accurately capture low-tide information. Second, globally distributed training samples are automatically generated by combining multisource datasets and the spatiotemporal refinement method. Third, the global coasts are divided into 588 5°×5° geographical tiles, and the local adaptive classification strategy is used to map tidal flats in each 5°×5° region by using multisourced training features and the derived globally distributed training samples. The statistical results show that the total global area of tidal flats is about 140,922.5 km 2 , with more than 75% distributed on 3 continents in the Northern Hemisphere, especially in Asia (approximately 43.1% of the total). Finally, the GTF30 tidal flat dataset is quantitatively assessed using 13,994 samples, yielding a good overall accuracy of 90.34%. Meanwhile, the intercomparisons with several existing tidal flat datasets indicate that the GTF30 products can greatly improve the mapping accuracy of tidal flats. Therefore, the novel method can support the automated mapping of tidal flats, and the GTF30 dataset can provide scientific guidance and data support for protecting coastal ecosystems and supporting coastal economic and social development. The GTF30 tidal flat dataset in 2020 is freely accessible via https://doi.org/10.5281/zenodo.7936721 .

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3