Choroidal Optical Coherence Tomography Angiography: Noninvasive Choroidal Vessel Analysis via Deep Learning

Author:

Zhu Lei123,Li Junmeng3,Hu Yicheng123,Zhu Ruilin3,Zeng Shuang123,Rong Pei3,Zhang Yadi3,Gu Xiaopeng3,Wang Yuwei3,Zhang Zhiyue3,Yang Liu3,Ren Qiushi124,Lu Yanye123ORCID

Affiliation:

1. Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China.

2. Department of Biomedical Engineering, Peking University, Beijing 100871, China.

3. Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China.

4. National Biomedical Imaging Center, Peking University, Beijing 100871, China.

Abstract

Background: The choroid is the most vascularized structure in the human eye, associated with numerous retinal and choroidal diseases. However, the vessel distribution of choroidal sublayers has yet to be effectively explored due to the lack of suitable tools for visualization and analysis. Methods: In this paper, we present a novel choroidal angiography strategy to more effectively evaluate vessels within choroidal sublayers in the clinic. Our approach utilizes a segmentation model to extract choroidal vessels from OCT B-scans layer by layer. Furthermore, we ensure that the model, trained on B-scans with high choroidal quality, can proficiently handle the low-quality B-scans commonly collected in clinical practice for reconstruction vessel distributions. By treating this process as a cross-domain segmentation task, we propose an ensemble discriminative mean teacher structure to address the specificities inherent in this cross-domain segmentation process. The proposed structure can select representative samples with minimal label noise for self-training and enhance the adaptation strength of adversarial training. Results: Experiments demonstrate the effectiveness of the proposed structure, achieving a dice score of 77.28 for choroidal vessel segmentation. This validates our strategy to provide satisfactory choroidal angiography noninvasively, supportting the analysis of choroidal vessel distribution for paitients with choroidal diseases. We observed that patients with central serous chorioretinopathy have evidently ( P  < 0.05) lower vascular indexes at all choroidal sublayers than healthy individuals, especially in the region beyond central fovea of macula (larger than 6 mm). Conclusions: We release the code and training set of the proposed method as the first noninvasive mechnism to assist clinical application for the analysis of choroidal vessels.

Funder

High-level Hospital Construction Project of Guangdong Provincial People's Hospital

Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3