Bioinspired Adhesive and Antibacterial Microneedles for Versatile Transdermal Drug Delivery

Author:

Zhang Xiaoxuan12ORCID,Chen Guopu1,Yu Yunru12,Sun Lingyu12,Zhao Yuanjin12

Affiliation:

1. Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China

2. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

Abstract

Microneedles have attracted increasing interest among various medical fields due to their painless, noninvasive, and efficient way of drug delivery. However, practical applications of these microneedles in different epidermal locations and environments are still restricted by their low adhesion and poor antimicrobial activity. Here, inspired by the antibacterial strategy of Paenibacillus polymyxa and adhesion mechanisms of mussel byssi and octopus tentacles, we develop hierarchical microneedles with multifunctional adhesive and antibacterial abilities. With polydopamine hydrogel as the microneedle base and a loop of suction-cup-structured concave chambers encircling each microneedle, the generated microneedles can fit the skin well; keep strong adhesion in dry, moist, and wet environments; and realize self-repair after being split into two parts. Besides, as polymyxin is loaded into both the hydrogel tips and the polydopamine base, the microneedles are endowed with excellent ability to resist common bacteria during storage and usage. We have demonstrated that these microneedles not only showed excellent adhesion when applied to knuckles and ideal antibacterial activity but also performed well in drug-sustained release and treatment for the osteoarthritis rat model. These results indicate that bioinspired multifunctional microneedles will break through the limitation of traditional methods and be ideal candidates for versatile transdermal drug delivery systems.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3