Birefringence-Managed Normal-Dispersion Fiber Laser Delivering Energy-Tunable Chirp-Free Solitons

Author:

Mao Dong1,He Zhiwen1,Gao Qun1,Zeng Chao1,Yun Ling2,Du Yueqing1,Lu Hua1,Sun Zhipei3ORCID,Zhao Jianlin1

Affiliation:

1. Northwestern Polytechnical University, School of Physical Science and Technology, Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China, 710129

2. Nanjing University of Posts and Telecommunications, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing, China, 210046

3. Aalto University, Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto, Finland

Abstract

Chirp-free solitons have been mainly achieved with anomalous-dispersion fiber lasers by the balance of dispersive and nonlinear effects, and the single-pulse energy is constrained within a relatively small range. Here, we report a class of chirp-free pulse in normal-dispersion erbium-doped fiber lasers, termed birefringence-managed soliton, in which the birefringence-related phase-matching effect dominates the soliton evolution. Controllable harmonic mode locking from 5 order to 85 order is obtained at the same pump level of ~10 mW with soliton energy fully tunable beyond ten times, which indicates a new birefringence-related soliton energy law, which fundamentally differs from the conventional soliton energy theorem. The unique transformation behavior between birefringence-managed solitons and dissipative solitons is directly visualized via the single-shot spectroscopy. The results demonstrate a novel approach of engineering fiber birefringence to create energy-tunable chirp-free solitons in normal-dispersion regime and open new research directions in fields of optical solitons, ultrafast lasers, and their applications.

Funder

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3