An ILP-Assisted Two-Stage Layout Optimization Method for Satellite Payload Placement

Author:

Chen Xiaoqian1,Chen Xianqi12ORCID,Xia Yufeng12,Zhou Weien1,Yao Wen1ORCID

Affiliation:

1. Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071China

2. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

In the satellite overall design phase, it is a crucial step to perform satellite layout design to guarantee that the aggregation of electronic components can operate normally and stably in an appropriate temperature environment. In order to handle the satellite payload placement problem of the DongFangHong 4 (DFH-4) platform, the heat pipe-constrained component layout optimization (HCLO) problem is proposed with the HCLO model formulated. Through careful investigation, it can be divided into two optimization subproblems that can be solved subsequently. Based on the divide-and-conquer strategy, an integer linear programming- (ILP-) assisted two-stage layout optimization method is proposed. In stage one, component-heat pipe distribution optimization is performed using the ILP technique so that specific heat pipes occupied by each component can be determined and the horizontal movement range of components can be reduced. In stage two, the detailed component layout optimization is investigated to obtain the final positions of components. First, the sequence layout sampling (SeqLS) method is used to generate one nonoverlap initial layout. Next, swap operation between components is incorporated to reduce the centroid deviation. Finally, sequential quadratic programming (SQP) search is conducted based on the generated promising initial layout solutions. Therefore, the SeqLS-based heuristic layout search algorithm is proposed in the second stage. Two layout test cases, including 15 components and 90 components, respectively, are investigated to demonstrate the validity and efficacy of the proposed layout design method. Experimental results show that it is promising to apply such a two-stage approach for satellite payload placement in engineering.

Funder

Post-Graduate Scientific Research Innovation Project of Hunan Province

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interval Pareto front-based multi-objective robust optimization for sensor placement in structural modal identification;Reliability Engineering & System Safety;2024-02

2. Edge Node Cooperation and Resource Sharing in Mobile Edge Computing;2023 International Conference on Wireless Communications and Signal Processing (WCSP);2023-11-02

3. A New Model Inspired by the Pompeii Worm to Reverse Overheating in Nanosatellites;Space: Science & Technology;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3