Inherent Anharmonicity of Harmonic Solids

Author:

Agne Matthias T.1ORCID,Anand Shashwat1ORCID,Snyder G. Jeffrey1ORCID

Affiliation:

1. Department Materials Science and Engineering, Northwestern University, Evanston, IL, USA

Abstract

Atomic vibrations, in the form of phonons, are foundational in describing the thermal behavior of materials. The possible frequencies of phonons in materials are governed by the complex bonding between atoms, which is physically represented by a spring-mass model that can account for interactions (spring forces) between the atoms (masses). The lowest-order, harmonic , approximation only considers linear forces between atoms and is thought incapable of explaining phenomena like thermal expansion and thermal conductivity, which are attributed to nonlinear, anharmonic , interactions. Here, we show that the kinetic energy of atoms in a solid produces a pressure much like the kinetic energy of atoms in a gas does. This vibrational or phonon pressure naturally increases with temperature, as it does in a gas and therefore results in a thermal expansion. Because thermal expansion thermodynamically defines a Grüneisen parameter γ , which is a typical metric of anharmonicity, we show that even a harmonic solid will necessarily have some anharmonicity. A consequence of this phonon pressure model is a harmonic estimation of the Grüneisen parameter as γ 3 / 2 3 4 x 2 / 1 + 2 x 2 , where x = v t / v l is the ratio of the transverse and longitudinal speeds of sound. We demonstrate the immediate utility of this model by developing a high-throughput harmonic estimate of lattice thermal conductivity that is comparable to other state-of-the-art estimations. By linking harmonic and anharmonic properties explicitly, this study provokes new ideas about the fundamental nature of anharmonicity, while also providing a basis for new material engineering design metrics.

Funder

U.S. Department of Energy

PPG

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3