PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants

Author:

Li Dawei12ORCID,Li Jinsheng3,Xiang Shiyu3,Pan Anqi23

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Information Sciences and Technology, Donghua University, Shanghai 201620, China

2. Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China

3. College of Information Sciences and Technology, Donghua University, Shanghai 201620, China

Abstract

Phenotyping of plant growth improves the understanding of complex genetic traits and eventually expedites the development of modern breeding and intelligent agriculture. In phenotyping, segmentation of 3D point clouds of plant organs such as leaves and stems contributes to automatic growth monitoring and reflects the extent of stress received by the plant. In this work, we first proposed the Voxelized Farthest Point Sampling (VFPS), a novel point cloud downsampling strategy, to prepare our plant dataset for training of deep neural networks. Then, a deep learning network—PSegNet, was specially designed for segmenting point clouds of several species of plants. The effectiveness of PSegNet originates from three new modules including the Double-Neighborhood Feature Extraction Block (DNFEB), the Double-Granularity Feature Fusion Module (DGFFM), and the Attention Module (AM). After training on the plant dataset prepared with VFPS, the network can simultaneously realize the semantic segmentation and the leaf instance segmentation for three plant species. Comparing to several mainstream networks such as PointNet++, ASIS, SGPN, and PlantNet, the PSegNet obtained the best segmentation results quantitatively and qualitatively. In semantic segmentation, PSegNet achieved 95.23%, 93.85%, 94.52%, and 89.90% for the mean Prec, Rec, F1, and IoU, respectively. In instance segmentation, PSegNet achieved 88.13%, 79.28%, 83.35%, and 89.54% for the mPrec, mRec, mCov, and mWCov, respectively.

Funder

Fundamental Research Funds for the Central Universities of China

Shanghai Sailing Program

Natural Science Foundation of Shanghai

Shanghai Rising-Star Program

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Reference88 articles.

1. A review of computer vision technologies for plant phenotyping;Li Z.;Computers and Electronics in Agriculture,2020

2. P. Trivedi Advances in Plant Physiology IK International Pvt Ltd 2006

3. Genotypes, Networks, Phenotypes: Moving Toward Plant Systems Genetics

4. Crop genome-wide association study: a harvest of biological relevance

5. Plant phenotyping research trends, a science mapping approach;Costa C.;Frontiers in Plant Science,2019

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3