Balancing Energy-Level Difference for Efficient n-i-p Perovskite Solar Cells with Cu Electrode

Author:

Xu Ziqi12,Li Nengxu1,Niu Xiuxiu13,Liu Huifen1,Liu Guilin4,Chen Qi3,Zhou Huanping1

Affiliation:

1. Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, BIC-ESAT, School of Materials Science and Engineering, Peking University, Beijing 100871, China

2. China Automotive Technology and Research Center Co., Ltd., Tianjin, China

3. Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

4. School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China

Abstract

Developing low cost and stable metal electrode is crucial for mass production of perovskite solar cells (PSCs). As an earth-abundant element, Cu becomes an alternative candidate to replace noble metal electrodes such as Au and Ag, due to its comparable physiochemical properties with simultaneously good stability and low cost. However, the undesirable band alignment associated with the device architecture impedes the exploration of efficient Cu-based n-i-p PSCs. Here, we demonstrated the ability of tuning the Fermi level ( E F ) of hole transport layer (HTL) to reduce the energy level difference (Schottky barrier) between HTLs and Cu. Further, we identified that the balance of energy level difference between HTL and adjacent layers (including perovskite and Cu) is crucial to efficient carrier transportation and photovoltaic performance improvement in the PSCs. Under the optimized condition, we achieve a device power conversion efficiency (PCE) of 20.10%, which is the highest on the planar n-i-p PSCs with Cu electrode. Meanwhile, the Cu-based PSCs can maintain 92% of their initial efficiency after 1000 h storage, which is comparable with Au-based devices. The present work not only extends the understanding on the band alignment of neighboring semiconductor functional layer in the device architecture to improve the resulting performance but also suggests great potential of Cu electrode for application in PSCs community.

Funder

Tencent Foundation

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3