Robotic Intracellular Electrochemical Sensing for Adherent Cells

Author:

Hu Weikang1ORCID,Ma Yanmei1,Zhan Zhen1,Hussain Danish12,Hu Chengzhi13ORCID

Affiliation:

1. Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China

2. Department of Mechatronics Engineering, National University of Sciences and Technology, Islamabad, Pakistan

3. Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China

Abstract

Nanopipette-based observation of intracellular biochemical processes is an important approach to revealing the intrinsic characteristics and heterogeneity of cells for better investigation of disease progression or early disease diagnosis. However, the manual operation needs a skilled operator and faces problems such as low throughput and poor reproducibility. This paper proposes an automated nanopipette-based microoperation system for cell detection, three-dimensional nonovershoot positioning of the nanopipette tip in proximity to the cell of interest, cell approaching and proximity detection between nanopipette tip and cell surface, and cell penetration and detection of the intracellular reactive oxygen species (ROS). A robust focus algorithm based on the number of cell contours was proposed for adherent cells, which have sharp peaks while retaining unimodality. The automated detection of adherent cells was evaluated on human umbilical cord vein endothelial cells (HUVEC) and NIH/3T3 cells, which provided an average of 95.65% true-positive rate (TPR) and 7.59% false-positive rate (FPR) for in-plane cell detection. The three-dimensional nonovershoot tip positioning of the nanopipette was achieved by template matching and evaluated under the interference of cells. Ion current feedback was employed for the proximity detection between the nanopipette tip and cell surface. Finally, cell penetration and electrochemical detection of ROS were demonstrated on human breast cancer cells and zebrafish embryo cells. This work provides a systematic approach for automated intracellular sensing for adherent cells, laying a solid foundation for high-throughput detection, diagnosis, and classification of different forms of biochemical reactions within single cells.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

Science, Technology and Innovation Commission of Shenzhen Municipality

Science and Technology Program of Guangdong

Shenzhen Science and Technology Program

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3