Hierarchical Canonical Correlation Analysis Reveals Phenotype, Genotype, and Geoclimate Associations in Plants

Author:

Petegrosso Raphael1,Song Tianci1,Kuang Rui1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA

Abstract

The local environment of the geographical origin of plants shaped their genetic variations through environmental adaptation. While the characteristics of the local environment correlate with the genotypes and other genomic features of the plants, they can also be indicative of genotype-phenotype associations providing additional information relevant to environmental dependence. In this study, we investigate how the geoclimatic features from the geographical origin of the Arabidopsis thaliana accessions can be integrated with genomic features for phenotype prediction and association analysis using advanced canonical correlation analysis (CCA). In particular, we propose a novel method called hierarchical canonical correlation analysis (HCCA) to combine mutations, gene expressions, and DNA methylations with geoclimatic features for informative coprojections of the features. HCCA uses a condition number of the cross-covariance between pairs of datasets to infer a hierarchical structure for applying CCA to combine the data. In the experiments on Arabidopsis thaliana data from 1001 Genomes and 1001 Epigenomes projects and climatic, atmospheric, and soil environmental variables combined by CLIMtools, HCCA provided a joint representation of the genomic data and geoclimate data for better prediction of the special flowering time at 10°C (FT10) of Arabidopsis thaliana. We also extended HCCA with information from a protein-protein interaction (PPI) network to guide the feature learning by imposing network modules onto the genomic features, which are shown to be useful for identifying genes with more coherent functions correlated with the geoclimatic features. The findings in this study suggest that environmental data comprise an important component in plant phenotype analysis. HCCA is a useful data integration technique for phenotype prediction, and a better understanding of the interactions between gene functions and environment as more useful functional information is introduced by coprojections of multiple genomic datasets.

Funder

Ministério da Educação

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phenotype Prediction by Heterogeneous Molecular Network Embedding;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3