High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode

Author:

Li Yuqian1,Zhang Liyuan1,Wang Xiuli1,Xia Xinhui1,Xie Dong2,Gu Changdong1,Tu Jiangping1

Affiliation:

1. State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

Amorphous carbon is considered as a prospective and serviceable anode for the storage of sodium. In this contribution, we illuminate the transformation rule of defect/void ratio and the restrictive relation between specific capacity and rate capability. Inspired by this mechanism, ratio of plateau/slope capacity is regulated via temperature-control pyrolysis. Moreover, pore-forming reaction is induced to create defects, open up the isolated voids, and build fast ion channels to further enhance the capacity and rate ability. Numerous fast ion channels, high ion-electron conductivity, and abundant defects lead the designed porous hard carbon/Co3O4 anode to realize a high specific capacity, prolonged circulation ability, and enhanced capacity at high rates. This research deepens the comprehension of sodium storage behavior and proposes a fabrication approach to achieve high performance carbonaceous anodes for sodium-ion batteries.

Funder

Ministry of Education’s

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3