Repeated Multiview Imaging for Estimating Seedling Tiller Counts of Wheat Genotypes Using Drones

Author:

Roth Lukas1ORCID,Camenzind Moritz1,Aasen Helge1ORCID,Kronenberg Lukas1,Barendregt Christoph2,Camp Karl-Heinz2,Walter Achim1,Kirchgessner Norbert1ORCID,Hund Andreas1ORCID

Affiliation:

1. ETH Zurich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zurich, Switzerland

2. Delley Samen und Pflanzen AG, Route de Portalban 40, 1567 Delley, Switzerland

Abstract

Early generation breeding nurseries with thousands of genotypes in single-row plots are well suited to capitalize on high throughput phenotyping. Nevertheless, methods to monitor the intrinsically hard-to-phenotype early development of wheat are yet rare. We aimed to develop proxy measures for the rate of plant emergence, the number of tillers, and the beginning of stem elongation using drone-based imagery. We used RGB images (ground sampling distance of 3 mm pixel-1) acquired by repeated flights (≥ 2 flights per week) to quantify temporal changes of visible leaf area. To exploit the information contained in the multitude of viewing angles within the RGB images, we processed them to multiview ground cover images showing plant pixel fractions. Based on these images, we trained a support vector machine for the beginning of stem elongation (GS30). Using the GS30 as key point, we subsequently extracted plant and tiller counts using a watershed algorithm and growth modeling, respectively. Our results show that determination coefficients of predictions are moderate for plant count (R2=0.52), but strong for tiller count (R2=0.86) and GS30 (R2=0.77). Heritabilities are superior to manual measurements for plant count and tiller count, but inferior for GS30 measurements. Increasing the selection intensity due to throughput may overcome this limitation. Multiview image traits can replace hand measurements with high efficiency (85–223%). We therefore conclude that multiview images have a high potential to become a standard tool in plant phenomics.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3