Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS2 Colloidal Nanocrystals

Author:

Zaffalon Matteo L.1ORCID,Pinchetti Valerio1ORCID,Camellini Andrea2,Vikulov Sergey3,Capitani Chiara14,Bai Bing5,Xu Meng5,Meinardi Francesco1ORCID,Zhang Jiatao5,Manna Liberato3,Zavelani-Rossi Margherita26ORCID,Crooker Scott A.7,Brovelli Sergio1ORCID

Affiliation:

1. Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy

2. Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy

3. Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

4. Glass to Power SpA, Via Fortunato Zeni 8, 38068 Rovereto, Italy

5. Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

6. IFN-CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

7. National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract

Ternary I-III-VI2 nanocrystals (NCs), such as AgInS2 and CuInS2, are garnering interest as heavy-metal-free materials for photovoltaics, luminescent solar concentrators, LEDs, and bioimaging. The origin of the emission and absorption properties in this class of NCs is still a subject of debate. Recent theoretical and experimental studies revealed that the characteristic Stokes-shifted and long-lived luminescence of stoichiometric CuInS2 NCs arises from the detailed structure of the valence band featuring two sublevels with different parity. The same valence band substructure is predicted to occur in AgInS2 NCs, yet no experimental confirmation is available to date. Here, we use complementary spectroscopic, spectro-electrochemical, and magneto-optical investigations as a function of temperature to investigate the band structure and the excitonic recombination mechanisms in stoichiometric AgInS2 NCs. Transient transmission measurements reveal the signatures of two subbands with opposite parity, and photoluminescence studies at cryogenic temperatures evidence a dark state emission due to enhanced exchange interaction, consistent with the behavior of stoichiometric CuInS2 NCs. Lowering the temperature as well as applying reducing electrochemical potentials further suppress electron trapping, which represents the main nonradiative channel for exciton decay, leading to nearly 100% emission efficiency.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3