Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model

Author:

Bai Dianchun12ORCID,Liu Tie1ORCID,Han Xinghua1,Yi Hongyu1

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China

2. Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded chip with small storage space, this paper presents a feature model construction and optimization method based on multichannel sEMG amplification unit. The feature model is established by using multidimensional sequential sEMG images by combining convolutional neural network and long-term memory network to solve the problem of multistate sEMG signal recognition. The experimental results show that under the same network structure, the sEMG signal with fast Fourier transform and root mean square as feature data processing has a good recognition rate, and the recognition accuracy of complex gestures is 91.40%, with the size of 1 MB. The model can still control the artificial hand accurately when the model is small and the precision is high.

Funder

Department of Education of Liaoning Province

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3