Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier

Author:

Wang Lei1,Li Jing2,Zhang Bo3,Feng Shile2,Zhang Mei2,Wu Dong4,Lu Yang2ORCID,Kai Ji Jung2,Liu Jing1,Wang Zuankai2ORCID,Jiang Lei3

Affiliation:

1. Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China

3. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

4. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China

Abstract

Achieving the directional and long-range droplet transport on solid surfaces is widely preferred for many practical applications but has proven to be challenging. Particularly, directionality and transport distance of droplets on hydrophobic surfaces are mutually exclusive. Here, we report that drain fly, a ubiquitous insect maintaining nonwetting property even in very high humidity, develops a unique ballistic droplet transport mechanism to meet these demanding challenges. The drain fly serves as a flexible rectifier to allow for a directional and long-range propagation as well as self-removal of a droplet, thus suppressing unwanted liquid flooding. Further investigation reveals that this phenomenon is owing to the synergistic conjunction of multiscale roughness, structural periodicity, and flexibility, which rectifies the random and localized droplet nucleation (nanoscale and microscale) into a directed and global migration (millimeter-scale). The mechanism we have identified opens up a new approach toward the design of artificial rectifiers for broad applications.

Funder

Shenzhen Science and Technology Innovation Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3