Konum Tabanlı Tahminde Makine Öğrenme Yöntemlerinin Performansları

Author:

ÖZMERDİVENLİ Nuh Mehmet1,TAŞYÜREK Murat1,HIZLISOY Serhat1,DAŞBAŞI Bahatdin1

Affiliation:

1. Kayseri University

Abstract

Thanks to the technological developments that have taken place in recent years, the number, variety and quality of the data obtained using IoT (Internet of Things) sensors have been increasing. Data obtained from IoT sensors have been used in many scientific fields such as land use, climate change, vegetation analysis and air quality forecasting. In this study, a location-based spatial analysis application was carried out using the data obtained from IoT sensors with machine learning. With this application, the average temperature information of the station was estimated with Artificial Neural Network (ANN), Random Forests (RF), and Support Vector Machines (SVM) methods using daily average humidity, average pressure, and station altitude information on real datas of Kayseri acquired from the Turkish State Meteorological Service, and then performances of the methods were compared. In the experimental evaluations, the ANN, RF and SVM methods obtained an average of 0.83, 0.75 and 0.50 R2 values. The ANN method outperformed the RF and SVM methods in location-based temperature estimation.

Publisher

Cukurova Universitesi Muhendislik-Mimarlik Fakultesi Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3