Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle

Author:

MEBARKİ Billal1ORCID

Affiliation:

1. university of science and technology Houari Boumedienne

Abstract

In this paper, new cycle is developed to generate simultaneously electrical and cooling power by placing a turbine between the generator and ejector in the conventional ejector-assisted absorption cooling cycle. The aim of developed cycle is to increase the exergy efficiency of cycle by adding an electrical power generation made it more environmentally friendly and reduce its dependents of fossil energy sources. The first, second laws of thermodynamic, mass and energy balance is applied for each cycle component and the constant mixing pressure ejector model is used to develop a numerical model of proposed cycle. The results depict that the augmentation of generation temperature is positively affected the work produced in the turbine contrary for cycle coefficient of performance, for every working conditions there are a certain value of generation temperature which its exergy performance of cycle achieves the maximum, the augmentation of output pressure of turbine is positively affected the cycle coefficient of performance contrary of the work produced in the turbine and the cycle exergy efficiency and the augmentation of condensation temperature is positively affected the cycle exergy efficiency and the work produced in the turbine contrary for cycle coefficient of performance and the augmentation of evaporation temperature is positively affected the cycle coefficient of performance and the cycle exergy efficiency contrary for the work produced in the turbine The results also show that the improvement of exergy efficiency of proposed cycle is 29.41% and 46% compared with the absorption cooling cycle with double and triple effect under the same operating conditions.

Publisher

International Centre for Applied Thermodynamics (ICAT)

Subject

General Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3