Predicción de infectados por Covid-19 en el Perú por el modelo de media móvil integrada autorregresiva

Author:

Aro Huanacuni Alex YounORCID

Abstract

Durante el brote del virus Covid-19, varios investigadores han estudiado diversos modelos matemáticos de pronóstico de infecciones y muertes; así como, la tasa de contagio del virus. En la actualidad sigue vigente el virus con algunas variantes y conocer su comportamiento es de mucha importancia para desarrollar acciones efectivas en el control de la situación actual y futura de la epidemia. El objetivo fue predecir la cantidad de infectados acumulados por Covid-19, de 38 días, a partir de 23 de diciembre del 2021, utilizando los datos registrados en la Organización Mundial de la Salud (OMS), del caso Perú, y realizando entrenamientos del modelo de media móvil integrada autorregresiva (ARIMA) en el software Python 3. Los modelos más óptimos obtenidos con datos reales de número de casos infectados y muertes diarias por Covid-19, según los parámetros estadísticos EMPA y R2 fueron ARIMA(3,0,1) en la predicción de casos diarios con EMPA=0,178 y R2=0,804 y ARIMA(3,1,1), con EMPA= 0,243 y R2=0,579, en la predicción de muertes diarias. En los cinco modelos aplicados en el periodo de predicción, se estimó un promedio de 53518 personas infectadas por Covid-19.

Publisher

Universidad Nacional Jorge Basadre Grohmann

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference24 articles.

1. Adhikari, S. P., Meng, S., Wu, Y., Mao, Y., Ye, R., Wang, Q., Sun, C., Sylvia, S., Rozelle, S., Raat, H., & Zhou, H. (2020). A scoping review of 2019 Novel Coronavirus during the early outbreak period: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control. Infectious Diseases of Poverty, 1–12. https://doi.org/10.21203/rs.2.24474/v1

2. Agrawal, U., Katikireddi, S. V., McCowan, C., Mulholland, R. H., Azcoaga-Lorenzo, A., Amele, S., Fagbamigbe, A. F., Vasileiou, E., Grange, Z., Shi, T., Kerr, S., Moore, E., Murray, J. L. K., Shah, S. A., Ritchie, L., O'Reilly, D., Stock, S. J., Beggs, J., Chuter, A., … Sheikh, A. (2021). COVID-19 hospital admissions and deaths after BNT162b2 and ChAdOx1 nCoV-19 vaccinations in 2·57 million people in Scotland (EAVE II): a prospective cohort study. The Lancet Respiratory Medicine, 9(12), 1439–1449. https://doi.org/10.1016/s2213-2600(21)00380-5

3. Awan, T. M., & Aslam, F. (2020). Prediction of daily COVID-19 cases in European countries using automatic ARIMA model. Journal of Public Health Research, 9(3), 227–233. https://doi.org/10.4081/jphr.2020.1765

4. Ayele, A. W., Zewdie, M. A., & Bayko, T. (2020). Modeling and Forecasting the Global Daily Incidence of Novel Coronavirus Disease ( COVID-19 ): An Application of Autoregressive Moving Average ( ARMA ) Model. International Journal of Public Health and Safety, 5(April).

5. Barandalla, I., Alvarez, C., Barreiro, P., de Mendoza, C., González-Crespo, R., & Soriano, V. (2021). Impact of scaling up SARS-CoV-2 vaccination on COVID-19 hospitalizations in Spain. International Journal of Infectious Diseases, 112, 81–88. https://doi.org/10.1016/j.ijid.2021.09.022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3