Machine Learning Approach for Thyroid Cancer Diagnosis Using Clinical Data

Author:

BALIKÇI ÇİÇEK İpek1ORCID,KÜÇÜKAKÇALI Zeynep1ORCID

Affiliation:

1. İNÖNÜ ÜNİVERSİTESİ, TIP FAKÜLTESİ

Abstract

Objective: With an early diagnosis of thyroid cancer, one of the world's most significant health issues, it is feasible to treat the nodules before the spread of malignant thyroid gland cells. It has become crucial to develop models for predicting thyroid cancer. In light of this, the purpose of this study is to develop a clinical decision support model using the Bagged CART model, a machine learning (ML) model for the prediction of thyroid cancer. Methods: Between 2010 and 2012, 724 patients who applied to China Median University Shengjing Hospital comprised the study's data set. The dataset comprises information on nodule malignancies, demographic characteristics, ultrasound characteristics, and blood test results for all patients who underwent thyroidectomy. Using this open-access data set, the Bagged CART modeling technique was applied. Negative predictive value (NPV), specificity (Spe), balanced accuracy (BACC), positive predictive value (PPV), accuracy (ACC), sensitivity (Sen), and F1-score performance metrics were used to evaluate the model's predictive performance. In addition, a 10-fold cross-validation method was used to determine the validity of the model. In addition, variable importance was established, which reveals how much the input variables impact the output variable. Results: ACC, BACC, Sen, Spe, PPV, NPV, and F1-score obtained from the model performance metrics were calculated to 99.1%, 98.7%, 99.7%, 97.7%, 99.1%, 99.2%, and 99.4%, respectively, as a result of modeling. According to the variable importance values that were acquired for the input variables in the dataset that was investigated in this study, the seven variable that hold the greatest significance are as follows: size, TSH, blood flow: size, TSH, blood flow: enriched, multilateral: yes, FT4, site: isthmus, and age, in that order. Conclusion: As a result, the Bagged CART model was found to be effective at predicting thyroid cancer based on the findings of this study. In addition, in this study, risk factors for thyroid cancer were evaluated and their importance values were given. With these results, the decision-making process about the disease will be able to accelerate and thus, it will be able to effective in preventive medicine practices.

Publisher

Ordu University

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3