Affiliation:
1. Fachbereich Biologie der Universitat, Postfach 3049, D-67653 Kaiserslautern, Germany
Abstract
Abstract
Gross O2 evolution and uptake by attached, drought-stressed leaves of wheat (Triticum aestivum) were measured using a 16O2/ 18O2 isotope technique and mass spectrometry. The activity of photosystem II, determined from the rate of 16O2 evolution, is only slightly affected under drought conditions. During drought stress, net CO2 uptake decreases due to stomatal closure, whereas the uptake of 18O2 is stimulated. The main O2-consuming reactions in the light are the Mehler-peroxidase (MP) reaction and the photorespiratory pathway. From measurements of the rate of carbon flux through the photorespiratory pathway, estimated by the analysis of the specific radioactivities of glycolate, we conclude that the rate of photorespiration is decreased with drought stress. Therefore, the O2 taken up in the light appears to be preferentially used by the MP reaction. In stressed leaves, 29.1% of the photosynthetic electrons are consumed in the MP reaction and 18.4% drive the photorespiratory pathway. Thus, overreduction of the electron transport chain is avoided preferably by the MP reaction when drought stress restricts CO2 reduction.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
239 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献