The β-Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi3

Author:

Avila Julian1,Gregory Oliver G.1,Su Dongyin1,Deeter Taunya A.1,Chen Sixue1,Silva-Sanchez Cecilia1,Xu Shouling1,Martin Gregory B.1,Devarenne Timothy P.1

Affiliation:

1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and

Abstract

Abstract The protein kinase AvrPto-dependent Pto-interacting protein3 (Adi3) is a known suppressor of cell death, and loss of its function has been correlated with cell death induction during the tomato (Solanum  lycopersicum) resistance response to its pathogen Pseudomonas syringae pv tomato. However, Adi3 downstream interactors that may play a role in cell death regulation have not been identified. We used a yeast two-hybrid screen to identify the plant SnRK1 (for Sucrose non-Fermenting-1-Related Protein Kinase1) protein as an Adi3-interacting protein. SnRK1 functions as a regulator of carbon metabolism and responses to biotic and abiotic stresses. SnRK1 exists in a heterotrimeric complex with a catalytic α-subunit (SnRK1), a substrate-interacting β-subunit, and a regulatory γ-subunit. Here, we show that Adi3 interacts with, but does not phosphorylate, the SnRK1 α-subunit. The ability of Adi3 to phosphorylate the four identified tomato β-subunits was also examined, and it was found that only the Galactose Metabolism83 (Gal83) β-subunit was phosphorylated by Adi3. This phosphorylation site on Gal83 was identified as serine-26 using a mutational approach and mass spectrometry. In vivo expression of Gal83 indicates that it contains multiple phosphorylation sites, one of which is serine-26. An active SnRK1 complex containing Gal83 as the β-subunit and sucrose nonfermenting4 as the γ-subunit was constructed to examine functional aspects of the Adi3 interaction with SnRK1 and Gal83. These assays revealed that Adi3 is capable of suppressing the kinase activity of the SnRK1 complex through Gal83 phosphorylation plus the interaction with SnRK1 and suggested that this function may be related to the cell death suppression activity of Adi3.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3