Induction of Vacuolar ATPase and Mitochondrial ATP Synthase by Aluminum in an Aluminum-Resistant Cultivar of Wheat

Author:

Hamilton Christie A.1,Good Allen G.1,Taylor Gregory J.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Abstract

Abstract Two 51-kD aluminum (Al)-induced proteins (RMP51, root membrane proteins of 51 kD) were recently discovered in an aluminum-resistant cultivar of wheat (Triticum aestivum) cv PT741 (Basu et al., 1994a). These proteins segregate with the aluminum resistance phenotype in a segregating population arising from a cross between Al-resistant cv PT741 and Al-sensitive cv Katepwa (Taylor et al., 1997). The proteins have been purified by continuous elution electrophoresis and analyzed by peptide microsequencing. Sequence analysis of the purified peptides revealed that they are homologous to the B subunit of the vacuolar H+-ATPase (V-ATPase) and the α- and β-subunits of the mitochondrial ATP synthase (F1F0-ATPase). To confirm that these ATPases are induced by Al, ATPase activity and transcript levels were analyzed under Al stress. Both V-ATPase and F1F0-ATPase activities were induced by Al and responded in a dose-dependent manner to 0 to 150 μm Al. In contrast, plasma membrane H+-ATPase (P-ATPase) activity decreased to 0.5× control levels, even when plants were exposed to 25 μm Al. Northern analysis showed that the transcript encoding the B subunit of V-ATPase increased by 2.2× in a dose-dependent manner, whereas levels of the transcript encoding the α-subunit of F1F0-ATPase remained constant. The effect of Al on ATPase activity in other cultivars was also examined. The Al-resistant cultivar, cv PT741, was the only cultivar to show induction of V- and F1F0-ATPases. These results suggest that the V-ATPase in cv PT741 is responding specifically to Al stress with the ATP required for its activity supplied by ATP synthase to maintain energy balance within the cell.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3