Affiliation:
1. Botanisches Institut, Universität Bonn, Venusbergweg 22, D–53115 Bonn, Germany
Abstract
Abstract
Spectrin-like epitopes were immunochemically detected and immunofluorescently localized in gravitropically tip-growing rhizoids and protonemata of characean algae. Antiserum against spectrin from chicken erythrocytes showed cross-reactivity with rhizoid proteins at molecular masses of about 170 and 195 kD. Confocal microscopy revealed a distinct spherical labeling of spectrin-like proteins in the apices of both cell types tightly associated with an apical actin array and a specific subdomain of endoplasmic reticulum (ER), the ER aggregate. The presence of spectrin-like epitopes, the ER aggregate, and the actin cytoskeleton are strictly correlated with active tip growth. Application of cytochalasin D and A23187 has shown that interfering with actin or with the calcium gradient, which cause the disintegration of the ER aggregate and abolish tip growth, inhibits labeling of spectrin-like proteins. At the beginning of the graviresponse in rhizoids the labeling of spectrin-like proteins remained in its symmetrical position at the cell tip, but was clearly displaced to the upper flank in gravistimulated protonemata. These findings support the hypothesis that a displacement of the Spitzenkörper is required for the negative gravitropic response in protonemata, but not for the positive gravitropic response in rhizoids. It is evident that the actin/spectrin system plays a role in maintaining the organization of the ER aggregate and represents an essential part in the mechanism of gravitropic tip growth.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献