Proteinase Activity during Tracheary Element Differentiation in Zinnia Mesophyll Cultures

Author:

Beers E. P.1,Freeman T. B.1

Affiliation:

1. Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0327

Abstract

Abstract The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3