Enhancement of Plant-Microbe Interactions Using a Rhizosphere Metabolomics-Driven Approach and Its Application in the Removal of Polychlorinated Biphenyls,

Author:

Narasimhan Kothandaraman1,Basheer Chanbasha2,Bajic Vladimir B.3,Swarup Sanjay1

Affiliation:

1. Department of Biological Sciences (K.N., S.S.) and

2. Department of Chemistry (C.B.), 10 Science Drive 4, National University of Singapore, Singapore 117 543; and

3. Institute for Infocomm Research (I2R), 21 Heng Mui Keng Terrace, National University of Singapore, Singapore 119 613 (V.B.B.)

Abstract

Abstract Persistent organic pollutants, such as polychlorinated biphenyls (PCBs), are a global problem. We demonstrate enhanced depletion of PCBs using root-associated microbes, which can use plant secondary metabolites, such as phenylpropanoids. Using a “rhizosphere metabolomics” approach, we show that phenylpropanoids constitute 84% of the secondary metabolites exuded from Arabidopsis roots. Phenylpropanoid-utilizing microbes are more competitive and are able to grow at least 100-fold better than their auxotrophic mutants on roots of plants that are able to synthesize or overproduce phenylpropanoids, such as flavonoids. Better colonization of the phenylpropanoid-utilizing strain in a gnotobiotic system on the roots of flavonoid-producing plants leads to almost 90% removal of PCBs in a 28-d period. Our work complements previous approaches to engineer soil microbial populations based on opines produced by transgenic plants and used by microbes carrying opine metabolism genes. The current approach based on plant natural products can be applied to contaminated soils with pre-existing vegetation. This strategy is also likely to be applicable to improving the competitive abilities of biocontrol and biofertilization strains.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3