Inactivation of the petE Gene for Plastocyanin Lowers Photosynthetic Capacity and Exacerbates Chilling-Induced Photoinhibition in the Cyanobacterium Synechococcus

Author:

Clarke A. K.1,Campbell D.1

Affiliation:

1. Department of Plant Physiology, University of Umea, Umea S-901 87, Sweden

Abstract

Abstract We describe the identification and expression of a petE gene in Synechococcus sp. PCC 7942, a cyanobacterium previously thought to lack plastocyanin. The petE gene is a 420-bp open reading frame that encodes a protein 70 to 75% similar to plastocyanins from other cyanobacteria. Synechococcus possesses a single genomic copy of petE located immediately upstream of the clpB gene. It is transcribed as a single mRNA (550 bases) and, in contrast to most other photobionts, the level of petE expression in Synechococcus is unaffected by variable copper concentrations during acclimated growth. Inactivation of petE does not prevent photoautotrophic growth, but does induce a dramatic increase in mRNA for the alternative electron carrier cytochrome c6. Despite this adjustment, loss of plastocyanin results in slower growth, lower photosystem I content, and a decreased maximum capacity for photosynthetic electron transport. The mutant is also more susceptible to chilling-induced photoinhibition during a shift from 37 to 25[deg]C, at which temperature its inherently lower photosynthetic capacity exacerbates the normal slowing of electron transfer reactions at low temperatures. Under similar conditions, the amount of petE message in the wild type decreases by 50% in the 1st h, but then increases dramatically to almost three times the 37[deg]C level by 9 h.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3