Elevated CO2 Effects during Leaf Ontogeny (A New Perspective on Acclimation)

Author:

Miller A.1,Tsai C. H.1,Hemphill D.1,Endres M.1,Rodermel S.1,Spalding M.1

Affiliation:

1. Department of Botany (A.M., C.-H.T., D.H., M.E., S.R., M.S.), and Interdepartmental Plant Physiology Program (A.M., D.H., S.R., M.S.), Iowa State University, Ames, Iowa 50011

Abstract

Abstract For many plants growth in elevated CO2 leads to reduced rates of photosynthesis. To examine the role that leaf ontogeny plays in the acclimation response, we monitored photosynthesis and some related parameters at short intervals throughout the ontogenetic development of tobacco (Nicotiana tabacum L.) leaves under ambient (350 [mu]L L-1)- and high (950 [mu]L L-1)-CO2 conditions. The pattern of photosynthetic rate over time was similar between the two treatments and consistent with the expected pattern for a typical dicot leaf. However, the photosynthesis pattern in high-CO2-grown tobacco was shifted temporally to an earlier maximum and subsequent senescent decline. Ribulose-1,5-biphosphate carboxylase/oxygenase activity appeared to be the main factor regulating photosynthetic rates in both treatments. Therefore, we propose a new model for interpreting the acclimation response. Lowered photosynthetic rates observed during acclimation appear to be the result of a shift in the timing of the normal photosynthetic stages of leaf ontogeny to an earlier onset of the natural decline in photosynthetic rates associated with senescence.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3