Identification and Functional Analysis of Tomato BRI1 and BAK1 Receptor Kinase Phosphorylation Sites

Author:

Bajwa Vikramjit S.1,Wang Xiaofeng1,Blackburn R. Kevin2,Goshe Michael B.2,Mitra Srijeet K.1,Williams Elisabeth L.3,Bishop Gerard J.4,Krasnyanski Sergei1,Allen George1,Huber Steven C.5,Clouse Steven D.1

Affiliation:

1. Department of Horticultural Science (V.S.B., X.W., S.K.M., S.K., G.A., S.D.C.) and

2. Department of Molecular and Structural Biochemistry (R.K.B., M.B.G.), North Carolina State University, Raleigh, North Carolina 27695

3. Plant and Crop Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (E.L.W.)

4. East Malling Research, East Malling, Kent ME19 6BJ, United Kingdom (G.J.B.); and

5. United States Department of Agriculture/Agricultural Research Service, University of Illinois, Urbana, Illinois 61801 (S.C.H.)

Abstract

Abstract Brassinosteroids (BRs) are plant hormones that are perceived at the cell surface by a membrane-bound receptor kinase, BRASSINOSTEROID INSENSITIVE1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation and transphosphorylation of BRI1 and BAK1, as well as phosphorylation of multiple downstream substrates, play critical roles. Detailed mechanisms of BR signaling have been examined in Arabidopsis (Arabidopsis thaliana), but the role of BRI1 and BAK1 phosphorylation in crop plants is unknown. As a foundation for understanding the mechanism of BR signaling in tomato (Solanum lycopersicum), we used liquid chromatography-tandem mass spectrometry to identify multiple in vitro phosphorylation sites of the tomato BRI1 and BAK1 cytoplasmic domains. Kinase assays showed that both tomato BRI1 and BAK1 are active in autophosphorylation as well as transphosphorylation of each other and specific peptide substrates with a defined sequence motif. Site-directed mutagenesis revealed that the highly conserved kinase domain activation loop residue threonine-1054 was essential for tomato BRI1 autophosphorylation and peptide substrate phosphorylation in vitro. Furthermore, analysis of transgenic lines expressing full-length tomato BRI1-Flag constructs in the weak tomato bri1 allele, curl3-abs1, demonstrated that threonine-1054 is also essential for normal BRI1 signaling and tomato growth in planta. Finally, we cloned the tomato ortholog of TGF-β Receptor Interacting Protein (TRIP1), which was previously shown to be a BRI1-interacting protein and kinase domain substrate in Arabidopsis, and found that tomato TRIP1 is a substrate of both tomato BRI1 and BAK1 kinases in vitro.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3