Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery

Author:

Dong Hong-Po12,Williams Ernest2,Wang Da-zhi3,Xie Zhang-Xian3,Hsia Ru-ching4,Jenck Alizée5,Halden Rolf5,Li Jing6,Chen Feng2,Place Allen R.2

Affiliation:

1. Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China (H.-P.D.)

2. Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202 (H.-P.D., E.W., F.C., A.R.P.)

3. State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361005, China (D.-z.W., Z.-X.X.)

4. Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland 21202 (R.-c.H.)

5. Center for Environmental Security Biodesign Institute/Security and Defense Systems Initiative, Arizona State University, Tempe, Arizona 85287 (A.J., R.H.); and

6. CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and BioEnergy Genome Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (J.L.)

Abstract

Abstract The Nannochloropsis genus contains oleaginous microalgae that have served as model systems for developing renewable biodiesel. Recent genomic and transcriptomic studies on Nannochloropsis species have provided insights into the regulation of lipid production in response to nitrogen stress. Previous studies have focused on the responses of Nannochloropsis species to short-term nitrogen stress, but the effect of long-term nitrogen deprivation remains largely unknown. In this study, physiological and proteomic approaches were combined to understand the mechanisms by which Nannochloropsis oceanica IMET1 is able to endure long-term nitrate deprivation and its ability to recover homeostasis when nitrogen is amended. Changes of the proteome during chronic nitrogen starvation espoused the physiological changes observed, and there was a general trend toward recycling nitrogen and storage of lipids. This was evidenced by a global down-regulation of protein expression, a retained expression of proteins involved in glycolysis and the synthesis of fatty acids, as well as an up-regulation of enzymes used in nitrogen scavenging and protein turnover. Also, lipid accumulation and autophagy of plastids may play a key role in maintaining cell vitality. Following the addition of nitrogen, there were proteomic changes and metabolic changes observed within 24 h, which resulted in a return of the culture to steady state within 4 d. These results demonstrate the ability of N. oceanica IMET1 to recover from long periods of nitrate deprivation without apparent detriment to the culture and provide proteomic markers for genetic modification.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3