PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl− Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells

Author:

Wang Yizhou1,Chen Zhong-Hua2,Zhang Ben1,Hills Adrian1,Blatt Michael R.1

Affiliation:

1. Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Y.W., Z.-H.C., B.Z., A.H., M.R.B.); and

2. School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, New South Wales 2753, Australia (Z.-H.C.)

Abstract

Abstract The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca2+ signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca2+ channels and Ca2+ release from endomembrane stores coordinately elevate cytosolic free Ca2+ concentration ([Ca2+]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca2+ channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca2+ channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca2+]i increases in vivo. The basal activity of Ca2+ channels was not affected in the mutant; raising the concentration of Ca2+ outside was sufficient to promote Ca2+ entry, to inactivate current carried by inward-rectifying K+ channels and to activate current carried by the anion channels, both of which are sensitive to [Ca2+]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca2+ channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca2+ channels through ROS, thus affecting [Ca2+]i and its regulation of stomatal closure.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3