Cyanobacterial Phytochrome2 Regulates the Heterotrophic Metabolism and Has a Function in the Heat and High-Light Stress Response

Author:

Schwarzkopf Manti1,Yoo Yong Cheol2,Hückelhoven Ralph1,Park Young Mok23,Proels Reinhard Korbinian1

Affiliation:

1. Lehrstuhl für Phytopathologie, Technische Universität München, D–85350 Freising-Weihenstephan, Germany (M.S., R.H., R.K.P.);

2. Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363–883, Korea (Y.C.Y., Y.M.P.); and

3. Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305–333, Korea (Y.M.P.)

Abstract

Abstract Cyanobacteria combine the photosynthetic and respiratory electron transport in one membrane system, the thylakoid membrane. This feature requires an elaborate regulation mechanism to maintain a certain redox status of the electron transport chain, hence allowing proper photosynthetic and respiratory energy metabolism. In this context, metabolic adaptations, as seen in the light-to-dark and dark-to-light transitions, are particularly challenging. However, the molecular basis of the underlying regulatory mechanisms is not well-understood. Here, we describe a function of cyanobacterial phytochrome2 (Cph2), a phytochrome of the cyanobacterial model system Synechocystis sp. PCC 6803, in regulation of the primary energy metabolism. When cells are shifted from photoautotrophic planktonic growth to light-activated heterotrophic growth and biofilm initiation, knockout of Cph2 results in impaired growth, a decrease in the activity of Glc-6-P dehydrogenase, a decrease of the transcript abundance/activity of cytochrome-c-oxidase, and slower phycocyanin degradation. Measurements of the plastoquinone reduction confirm an impaired heterotrophic metabolism in the cph2 knockout. When cells that were adapted to heterotrophic metabolism are shifted back to light conditions, the knockout of Cph2 results in an altered photosystem II chlorophyll fluorescence induction curve, which is indicative of an impaired redox balance of the electron transport chain. Moreover, Cph2 plays a role in the heat and high-light stress response, particularly under photomixotrophic conditions. Our results show a function of Cph2 in the adaptation of the primary energy metabolism to changing trophic conditions. The physiological role of Cph2 in biofilm formation is discussed.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3