Affiliation:
1. Transport Physiology Research Group, Department of Plant Ecology and Evolutionary Biology, Utrecht University, Sorbonnelaan 16, NL-3584 CA Utrecht, The Netherlands
Abstract
Abstract
The uptake of amino acids by excised seed coat halves of developing seeds of pea (Pisum sativum L.) was characterized. The influx of L-valine and L-glutamic acid was proportional to their external concentration, with coefficients of proportionality (k) of 11.0 and 7.1 [mu]mol g-1 fresh weight min-1 M-1, respectively. The influx of L-lysine could be analyzed into a component with linear kinetics (k = 8.1 [mu]mol g-1 fresh weight min-1 M-1) and one with saturation kinetics (Michaelis constant = 6.5 mM), but the latter may have resulted from the mutual interaction between the influx of the cationic lysine and the membrane potential. The influx of the amino acids was not affected by 10 [mu]M carbonylcyanide m-chlorophenylhydrazone, but was inhibited by about 50% in the presence of 2.5 mM p-chloromercuribenzene sulfonic acid. Conservative estimates of the permeability coefficients of the plasma membrane of seed coat parenchyma cells for lysine, glutamic acid, and several neutral amino acids were all in the range of 4 x 10–7 cm s-1 to 9 x 10–7 cm s-1, which is 4 to 5 orders of magnitude greater than those reported for artificial lipid bilayers. It is concluded that nonselective pores constitute a pathway in the plasma membrane for passive transport of amino acids. It is argued that this pathway is also used for the efflux of endogenous amino acids, the process by which nitrogen becomes available for the embryo.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献