Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis

Author:

Clauw Pieter1,Coppens Frederik1,De Beuf Kristof23,Dhondt Stijn1,Van Daele Twiggy1,Maleux Katrien1,Storme Veronique1,Clement Lieven2,Gonzalez Nathalie1,Inzé Dirk1

Affiliation:

1. Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.C., F.C., S.D., T.V.D., K.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.C., F.C., S.D., T.V.D., K.M., V.S., N.G., D.I.); and

2. Department of Applied Mathematics Computer Science and Statistics (K.D.B., L.C.) and

3. Stat-Gent CRESCENDO, Department of Applied Mathematics and Computer Science (K.D.B.), Ghent University, 9000 Ghent, Belgium

Abstract

Abstract Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3