Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem

Author:

Lakshmanan Venkatachalam1,Selvaraj Gopinath1,Bais Harsh P.1

Affiliation:

1. Department of Plant and Soil Sciences, University of Delaware, and Delaware Biotechnology Institute, Newark, Delaware 19711

Abstract

Abstract There is considerable evidence in the literature that beneficial rhizospheric microbes can alter plant morphology, enhance plant growth, and increase mineral content. Of late, there is a surge to understand the impact of the microbiome on plant health. Recent research shows the utilization of novel sequencing techniques to identify the microbiome in model systems such as Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). However, it is not known how the community of microbes identified may play a role to improve plant health and fitness. There are very few detailed studies with isolated beneficial microbes showing the importance of the functional microbiome in plant fitness and disease protection. Some recent work on the cultivated microbiome in rice (Oryza sativa) shows that a wide diversity of bacterial species is associated with the roots of field-grown rice plants. However, the biological significance and potential effects of the microbiome on the host plants are completely unknown. Work performed with isolated strains showed various genetic pathways that are involved in the recognition of host-specific factors that play roles in beneficial host-microbe interactions. The composition of the microbiome in plants is dynamic and controlled by multiple factors. In the case of the rhizosphere, temperature, pH, and the presence of chemical signals from bacteria, plants, and nematodes all shape the environment and influence which organisms will flourish. This provides a basis for plants and their microbiomes to selectively associate with one another. This Update addresses the importance of the functional microbiome to identify phenotypes that may provide a sustainable and effective strategy to increase crop yield and food security.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3