Galactose-Depleted Xyloglucan Is Dysfunctional and Leads to Dwarfism in Arabidopsis

Author:

Kong Yingzhen12,Peña Maria J.1,Renna Luciana3,Avci Utku1,Pattathil Sivakumar1,Tuomivaara Sami T.1,Li Xuemei4,Reiter Wolf-Dieter4,Brandizzi Federica3,Hahn Michael G.15,Darvill Alan G.16,York William S.16,O’Neill Malcolm A.1

Affiliation:

1. Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.),

2. Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);

3. United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; and

4. Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)

5. Department of Plant Biology (M.G.H.), and

6. Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;

Abstract

Abstract Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3