Affiliation:
1. Department of Regulation Biology, National Institute for Basic Biology, Okazaki 444, Japan (Z.G., N.T., T.S., N.M.)
Abstract
Abstract
Strong light leads to damage to photosynthetic machinery, particularly at low temperatures, and the main site of the damage is the D1 protein of the photosystem II (PSII) complex. Here we describe that transformation of Synechococcus sp. PCC 7942 with the desA gene for a [delta]12 desaturase increased unsaturation of membrane lipids and enhanced tolerance to strong light. To our knowledge, this is the first report of the successful genetic enhancement of tolerance to strong light. Analysis of the light-induced inactivation and of the subsequent recovery of the activity of the PSII complex revealed that the recovery process was markedly accelerated by the genetic transformation. Labeling experiments with [35S]L-methionine also revealed that the synthesis of the D1 protein de novo at low temperature, which was a prerequisite for the restoration of the PSII complex, was much faster in the transformed cells than in the wild-type cells. These findings demonstrate that the ability of membrane lipids to desaturate fatty acids is important for the photosynthetic organisms to tolerate strong light, by accelerating the synthesis of the D1 protein de novo.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献