Estimation of Polymer Rigidity in Cell Walls of Growing and Nongrowing Celery Collenchyma by Solid-State Nuclear Magnetic Resonance in Vivo

Author:

Fenwick K. M.1,Jarvis M. C.1,Apperley D. C.1

Affiliation:

1. Chemistry Department, Glasgow University, Glasgow G12 8QQ, Scotland, United Kingdom (K.M.F., M.C.J.)

Abstract

Abstract When the growth of a plant cell ceases, its walls become more rigid and lose the capacity to extend. Nuclear magnetic resonance relaxation methods were used to determine the molecular mobility of cell wall polymers in growing and nongrowing live celery (Apium graveolens L.) collenchyma. To our knowledge, this is the first time this approach has been used in vivo. Decreased polymer mobility in nongrowing cell walls was detected through the 13C-nuclear magnetic resonance spectrum by decreases in the proton spin-spin relaxation time constant and in the intensity of a sub-spectrum corresponding to highly mobile pectins, which was obtained by a spectral editing technique based on cross-polarization rates. Flexible, highly methyl-esterified pectins decreased in relative quantity when growth ceased. A parallel increase in the net longitudinal orientation of cellulose microfibrils was detected in isolated cell walls by polarized Fourier-transformed infrared spectrometry.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3