Efficient Prenylation by a Plant Geranylgeranyltransferase-I Requires a Functional CaaL Box Motif and a Proximal Polybasic Domain

Author:

Caldelari Daniela1,Sternberg Hasana2,Rodrı́guez-Concepción Manuel1,Gruissem Wilhelm1,Yalovsky Shaul2

Affiliation:

1. Department of Plant and Microbial Biology, University of California, Berkeley, California 94720–3102 (D.C., M.R.-C., W.G.); and

2. Department of Plant Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel (H.S., S.Y.)

Abstract

Abstract Geranylgeranyltransferase-I (GGT-I) is a heterodimeric enzyme that shares a common α-subunit with farnesyltransferase (FTase) and has a distinct β-subunit. GGT-I preferentially modifies proteins, which terminate in a CaaL box sequence motif. Cloning of Arabidopsis GGT-I β-subunit (AtGGT-IB) was achieved by a yeast (Saccharomyces cerevisiae) two-hybrid screen, using the tomato (Lycopersicon esculentum) FTase α-subunit (FTA) as bait. Sequence and structure analysis revealed that the core active site of GGT-I and FTase are very similar. AtGGT-IA/FTA and AtGGT-IB were co-expressed in baculovirus-infected insect cells to obtain recombinant protein that was used for biochemical and molecular analysis. The recombinant AtGGT-I prenylated efficiently CaaL box fusion proteins in which the a2 position was occupied by an aliphatic residue, whereas charged or polar residues at the same position greatly reduced the efficiency of prenylation. A polybasic domain proximal to the CaaL box motif induced a 5-fold increase in the maximal reaction rate, and increased the affinity of the enzyme to the protein substrate by an order of magnitude. GGT-I retained high activity in a temperature range between 24°C and 42°C, and showed increased activity rate at relatively basic pH values of 7.9 and 8.5. Reverse transcriptase-polymerase chain reaction, protein immuno-blots, and transient expression assays of green fluorescent protein fusion proteins show that GGT-IB is ubiquitously expressed in a number of tissues, and that expression levels and protein activity were not changed in mutant plants lacking FTase β-subunit.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3