Differences in Whole-Cell and Single-Channel Ion Currents across the Plasma Membrane of Mesophyll Cells from Two Closely RelatedThlaspi Species

Author:

Piñeros Miguel A.1,Kochian Leon V.1

Affiliation:

1. United States Plant, Soil, and Nutrition Laboratory, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853

Abstract

Abstract The patch clamp technique was used to study the physiology of ion transport in mesophyll cells from two Thlaspispp. that differ significantly in their physiology. In comparison withThlaspi arvense, Thlaspi caerulescens (a heavy metal accumulator) can grow in, tolerate, and accumulate very high levels of certain heavy metals (primarily zinc [Zn] and cadmium) in their leaf cells. The membrane conductance of every T. arvense leaf cell was dominated by a slowly activating, time-dependent outward rectifying current (SKOR). In contrast, only 23% of T. caerulescens cells showed SKOR activity, whereas the remaining 77% exhibit a rapidly developing instantaneous K+ outward rectifier (RKOR) current. In contrast to RKOR, the channels underlying the SKOR current were sensitive to changes in the extracellular ion activity. Single-channel recordings indicated the existence of K+ channel populations with similar unitary conductances, but distinct channel kinetics and regulation. The correlation between these recordings and the whole-cell data indicated that although one type of channel kinetics is preferentially activated in each Thlaspi spp., both species have the capability to switch between either type of current. Ion substitution in whole-cell and single-channel experiments indicated that although the SKOR and RKOR channels mediate a net outward K+ current, they can also allow a significant Zn2+ permeation (i.e. influx). In addition, single-channel recordings allowed us to identify an infrequent type of plasma membrane divalent cation channel that also can mediate Zn2+ influx. We propose that the different K+ channel types or channel states may result from and are likely to reflect differences in the cytoplasmic and apoplastic ionic environment in each species. Thus, the ability to interchangeably switch between different channel states allows each species to constantly adjust to changes in their apoplastic ionic environment.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3