Affiliation:
1. Department of Chemistry and Biochemistry (J.M.Q., M.E., J.L.M., S.M.) and
2. Molecular Biology Institute (J.M., S.M.), University of California, Los Angeles, California 90095–1569
Abstract
Abstract
Chlamydomonas reinhardtii activatesCpx1, Cyc6, and Crd1, encoding, respectively, coproporphyrinogen oxidase, cytochromec 6, and a novel di-iron enzyme when transferred to oxygen-deficient growth conditions. This response is physiologically relevant because C. reinhardtiiexperiences these growth conditions routinely, and furthermore, one of the target genes, Crd1, is functionally required for normal growth under oxygen-depleted conditions. The same genes are activated also in response to copper-deficiency through copper-response elements that function as target sites for a transcriptional activator. The core of the copper-response element, GTAC, is required also for the hypoxic response, as is a trans-acting locus, CRR1. Mercuric ions, which antagonize the copper-deficiency response, also antagonize the oxygen-deficiency response of these target genes. Taken together, these observations suggest that the oxygen- and copper-deficiency responses share signal transduction components. Nevertheless, whereas the copper-response element is sufficient for the nutritional copper response, the oxygen-deficiency response requires, in addition, a second cis-element, indicating that the response to oxygen depletion is not identical to the nutritional copper response. The distinction between the two responses is also supported by comparative analysis of the response of the target genes,Cyc6, Cpx1, and Crd1, to copper versus oxygen deficiency. A Crr1-independent pathway forHyd1 expression in oxygen-depleted C. reinhardtii demonstrates the existence of multiple oxygen/redox-responsive circuits in this model organism.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献