Affiliation:
1. Department of Biochemistry, State University of New York, Buffalo, New York 14214
Abstract
Abstract
Dinucleotide repeat DNA with the pattern (GA)n/(TC)n, so-called GAGA elements, control gene expression in animals, and are recognized by a specific regulatory protein. Here, a yeast one-hybrid screen was used to isolate soybean (Glycine max) cDNA encoding a GAGA-binding protein (GBP) that binds to (GA)n/(CT)nDNA. Soybean GBP was dissimilar from the GAGA factor ofDrosophila melanogaster. Recombinant GBP protein did not bind to dinucleotide repeat sequences other than (GA)n/(CT)n. GBP bound to the promoter of the heme and chlorophyll synthesis gene Gsa1, which contains a GAGA element. Removal of that GAGA element abrogated binding of GBP to the promoter. Furthermore, insertion of the GAGA element to a nonspecific DNA conferred GBP-binding activity on that DNA. Thus, the GAGA element of the Gsa1 promoter is both necessary and sufficient for GBP binding. Gbp mRNA was expressed in leaves and was induced in symbiotic root nodules elicited by the bacterium Bradyrhizobium japonicum. In addition,Gbp transcripts were much higher in leaves of dark-treated etiolated plantlets than in those exposed to light for 24 h. Homologs of GBP were found in other dicots and in the monocot rice (Oryza sativa), as well. We suggest that interaction between GAGA elements and GBP-like proteins is a regulatory feature in plants.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献