Proline Metabolism in the Wild-Type and in a Salt-Tolerant Mutant of Nicotiana plumbaginifolia Studied by13C-Nuclear Magnetic Resonance Imaging

Author:

Roosens Nancy H.1,Willem Rudolph2,Li Yan1,Verbruggen Ingrid2,Biesemans Monique12,Jacobs Michel1

Affiliation:

1. Laboratory of Plant Genetics, Institute of Molecular Biology, Free University of Brussels, Paardenstraat 65, B–1640 Sint-Genesius-Rode, Belgium (N.H.R., Y.L., M.B., M.J.); and

2. High Resolution NMR Centre Pleinlaan 2, B–1050 Brussel, Belgium (R.W., I.V., M.B.)

Abstract

Abstract To obtain insight into the link between proline (Pro) accumulation and the increase in osmotolerance in higher plants, we investigated the biochemical basis for the NaCl tolerance of a Nicotiana plumbaginifolia mutant (RNa) that accumulates Pro. Pro biosynthesis and catabolism were investigated in both wild-type and mutant lines. 13C-Nuclear magnetic resonance with [5-13C]glutamate (Glu) as the Pro precursor was used to provide insight into the mechanism of Pro accumulation via the Glu pathway. After 24 h under 200 mm NaCl stress in the presence of [5-13C]Glu, a significant enrichment in [5-13C]Pro was observed compared with non-stress conditions in both the wild type (P2) and the mutant (RNa). Moreover, under the same conditions, [5-13C]Pro was clearly synthesized in higher amounts in RNa than in P2. On the other hand, measurements of enzyme activities indicate that neither the biosynthesis via the ornithine pathway, nor the catabolism via the Pro oxidation pathway were affected in the RNa mutant. Finally, the regulatory effect exerted by Pro on its biosynthesis was evaluated. In P2 plantlets, exogenous Pro markedly reduced the conversion of [5-13C]Glu into [5-13C]Pro, whereas Pro feedback inhibition was not detected in the RNa plantlets. It is proposed that the origin of tolerance in the RNa mutant is due to a mutation leading to a substantial reduction of the feedback inhibition normally exerted in a wild-type (P2) plant by Pro at the level of the Δ-pyrroline-5-carboxylate synthetase enzyme.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3