Transcriptome Analysis of Proliferating Arabidopsis Endosperm Reveals Biological Implications for the Control of Syncytial Division, Cytokinin Signaling, and Gene Expression Regulation

Author:

Day Robert C.1,Herridge Rowan P.1,Ambrose Barbara A.1,Macknight Richard C.1

Affiliation:

1. Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand (R.C.D., R.P.H., R.C.M.); and Institute of Molecular BioSciences, Massey University, Palmerston North 4442, New Zealand (B.A.A.)

Abstract

AbstractDuring the early stages of seed development, Arabidopsis (Arabidopsis thaliana) endosperm is syncytial and proliferates rapidly through repeated rounds of mitosis without cytokinesis. This stage of endosperm development is important in determining final seed size and is a model for studying aspects of cellular and molecular biology, such as the cell cycle and genomic imprinting. However, the small size of the Arabidopsis seed makes high-throughput molecular analysis of the early endosperm technically difficult. Laser capture microdissection enabled high-resolution transcript analysis of the syncytial stage of Arabidopsis endosperm development at 4 d after pollination. Analysis of Gene Ontology representation revealed a developmental program dominated by the expression of genes associated with cell cycle, DNA processing, chromatin assembly, protein synthesis, cytoskeleton- and microtubule-related processes, and cell/organelle biogenesis and organization. Analysis of core cell cycle genes implicates particular gene family members as playing important roles in controlling syncytial cell division. Hormone marker analysis indicates predominance for cytokinin signaling during early endosperm development. Comparisons with publicly available microarray data revealed that approximately 800 putative early seed-specific genes were preferentially expressed in the endosperm. Early seed expression was confirmed for 71 genes using quantitative reverse transcription-polymerase chain reaction, with 27 transcription factors being confirmed as early seed specific. Promoter-reporter lines confirmed endosperm-preferred expression at 4 d after pollination for five transcription factors, which validates the approach and suggests important roles for these genes during early endosperm development. In summary, the data generated provide a useful resource providing novel insight into early seed development and identify new target genes for further characterization.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3