Aquaporin-Mediated Reduction in Maize Root Hydraulic Conductivity Impacts Cell Turgor and Leaf Elongation Even without Changing Transpiration

Author:

Ehlert Christina1,Maurel Christophe1,Tardieu François1,Simonneau Thierry1

Affiliation:

1. Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR759 INRA/Montpellier SupAgro, 34060 Montpellier, France (C.E., F.T., T.S.); and Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/UMR0386 INRA/Montpellier SupAgro/Université Montpellier 2, 34060 Montpellier, France (C.M.)

Abstract

Abstract Root hydraulic conductivity in plants (Lpr) exhibits large variations in response to abiotic stimuli. In this study, we investigated the impact of dynamic, aquaporin-mediated changes of Lpr on leaf growth, water potential, and water flux throughout the plant. For this, we manipulated Lpr by subjecting roots to four independent treatments, with aquaporin inhibitors applied either to transpiring maize (Zea mays) plants grown in hydroponics or to detopped root systems for estimation of Lpr. The treatments were acid load at pH 6.0 and 5.0 and hydrogen peroxide and anoxia applied for 1 to 2 h and subsequently reversed. First, we established that acid load affected cell hydraulic conductivity in maize root cortex. Lpr was reduced by all treatments by 31% to 63%, with half-times of about 15 min, and partly recovered when treatments were reversed. Cell turgor measured in the elongating zone of leaves decreased synchronously with Lpr, and leaf elongation rate closely followed these changes across all treatments in a dose-dependent manner. Leaf and xylem water potentials also followed changes in Lpr. Stomatal conductance and rates of transpiration and water uptake were not affected by Lpr reduction under low evaporative demand. Increased evaporative demand, when combined with acid load at pH 6.0, induced stomatal closure and amplified all other responses without altering their synchrony. Root pressurization reversed the impact of acid load or anoxia on leaf elongation rate and water potential, further indicating that changes in turgor mediated the response of leaf growth to reductions in Lpr.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3